<wbr id="ede8e"></wbr><bdo id="ede8e"><var id="ede8e"><optgroup id="ede8e"></optgroup></var></bdo>
    1. <sub id="ede8e"></sub>
    2. <sub id="ede8e"></sub>
    3. 18禁无遮挡啪啪无码网站,真人无码作爱免费视频,2018年亚洲欧美在线v,国产成人午夜一区二区三区 ,亚洲精品毛片一区二区,国产在线亚州精品内射,精品无码国产污污污免费,国内少妇人妻偷人精品
      首頁 > 文章中心 > 正文

      曲線方程數(shù)學(xué)教案

      前言:本站為你精心整理了曲線方程數(shù)學(xué)教案范文,希望能為你的創(chuàng)作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。

      曲線方程數(shù)學(xué)教案

      教學(xué)目標

      (1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.

      (2)理解曲線方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.

      (3)通過曲線方程概念的教學(xué),培養(yǎng)學(xué)生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點.

      (4)通過求曲線方程的教學(xué),培養(yǎng)學(xué)生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學(xué)生理解解析幾何的思想方法.

      (5)進一步理解數(shù)形結(jié)合的思想方法.

      教學(xué)建議

      教材分析

      (1)知識結(jié)構(gòu)

      曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.

      (2)重點、難點分析

      ①本節(jié)內(nèi)容教學(xué)的重點是使學(xué)生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想.

      ②本節(jié)的難點是曲線方程的概念和求曲線方程的方法.

      教法建議

      (1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學(xué)中應(yīng)從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應(yīng)關(guān)系,說明曲線與方程的對應(yīng)關(guān)系.曲線與方程對應(yīng)關(guān)系的基礎(chǔ)是點與坐標的對應(yīng)關(guān)系.注意強調(diào)曲線方程的完備性和純粹性.

      (2)可以結(jié)合已經(jīng)學(xué)過的直線方程的知識幫助學(xué)生領(lǐng)會坐標法和解析幾何的思想,學(xué)習(xí)解析幾何的意義和要解決的問題,為學(xué)習(xí)求曲線的方程做好邏輯上的和心理上的準備.

      (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.

      (4)從集合與對應(yīng)的觀點可以看得更清楚:

      設(shè)表示曲線上適合某種條件的點的集合;

      表示二元方程的解對應(yīng)的點的坐標的集合.

      可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

      (5)在學(xué)習(xí)求曲線方程的方法時,應(yīng)從具體實例出發(fā),引導(dǎo)學(xué)生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學(xué)生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結(jié)出求解步驟,應(yīng)在充分分析實例的基礎(chǔ)上讓學(xué)生自然地獲得.教學(xué)中對課本例2的解法分析很重要.

      這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

      文字語言中的幾何條件數(shù)學(xué)符號語言中的等式數(shù)學(xué)符號語言中含動點坐標,的代數(shù)方程簡化了的,的代數(shù)方程

      由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程.”

      (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習(xí)中掌握的,教學(xué)中要把握好“度”.

      教學(xué)設(shè)計示例

      課題:求曲線的方程(第一課時)

      教學(xué)目標:

      (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

      (2)進一步理解曲線的方程和方程的曲線.

      (3)初步掌握求曲線方程的方法.

      (4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.

      教學(xué)重點、難點:求曲線的方程.

      教學(xué)用具:計算機.

      教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.

      教學(xué)過程:

      【引入】

      1.提問:什么是曲線的方程和方程的曲線.

      學(xué)生思考并回答.教師強調(diào).

      2.坐標法和解析幾何的意義、基本問題.

      對于一個幾何問題,在建立坐標系的基礎(chǔ)上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:

      (1)根據(jù)已知條件,求出表示平面曲線的方程.

      (2)通過方程,研究平面曲線的性質(zhì).

      事實上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

      【問題】

      如何根據(jù)已知條件,求出曲線的方程.

      【實例分析】

      例1:設(shè)、兩點的坐標是、(3,7),求線段的垂直平分線的方程.

      首先由學(xué)生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

      解法一:易求線段的中點坐標為(1,3),

      由斜率關(guān)系可求得l的斜率為

      于是有

      即l的方程為

      分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

      (通過教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

      證明:(1)曲線上的點的坐標都是這個方程的解.

      設(shè)是線段的垂直平分線上任意一點,則

      將上式兩邊平方,整理得

      這說明點的坐標是方程的解.

      (2)以這個方程的解為坐標的點都是曲線上的點.

      設(shè)點的坐標是方程①的任意一解,則

      到、的距離分別為

      所以,即點在直線上.

      綜合(1)、(2),①是所求直線的方程.

      至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設(shè)是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標,這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

      解法二:設(shè)是線段的垂直平分線上任意一點,也就是點屬于集合

      由兩點間的距離公式,點所適合的條件可表示為

      將上式兩邊平方,整理得

      果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

      這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想.因此是個好方法.

      讓我們用這個方法試解如下問題:

      例2:點與兩條互相垂直的直線的距離的積是常數(shù)求點的軌跡方程.

      分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

      求解過程略.

      【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

      分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

      首先應(yīng)有坐標系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

      (1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對例如表示曲線上任意一點的坐標;

      (2)寫出適合條件的點的集合

      (3)用坐標表示條件,列出方程;

      (4)化方程為最簡形式;

      (5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

      一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

      上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正.

      下面再看一個問題:

      例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程.

      【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

      解:設(shè)點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合

      由距離公式,點適合的條件可表示為

      將①式移項后再兩邊平方,得

      化簡得

      由題意,曲線在軸的上方,所以,雖然原點的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

      【練習(xí)鞏固】

      題目:在正三角形內(nèi)有一動點,已知到三個頂點的距離分別為、、,且有,求點軌跡方程.

      分析、略解:首先應(yīng)建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設(shè)、的坐標為、,則的坐標為,的坐標為.

      根據(jù)條件,代入坐標可得

      化簡得

      由于題目中要求點在三角形內(nèi),所以,在結(jié)合①式可進一步求出、的范圍,最后曲線方程可表示為

      【小結(jié)】師生共同總結(jié):

      (1)解析幾何研究研究問題的方法是什么?

      (2)如何求曲線的方程?

      (3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應(yīng)注意什么?

      【作業(yè)】課本第72頁練習(xí)1,2,3;

      主站蜘蛛池模板: 日本高清在线观看WWW色| 久久精品激情亚洲一二区| 国产一区二区亚洲一区二区三区 | 国产乱码1卡二卡3卡四卡5| 影音先锋啪啪av资源网站| 性欧美vr高清极品| 色噜噜在线视频免费观看| 国产精品自拍三级在线观看| 白嫩人妻精品一二三四区| 亚洲国产日韩a在线亚洲| 亚洲第一无码AV无码专区| 亚洲全网成人资源在线观看| 国产成A人片在线观看视频下载| 精品一区二区亚洲国产| 好爽毛片一区二区三区四| 国产睡熟迷奷系列网站| 欧美人成精品网站播放| 国产学生裸体无遮挡免费| 国产日韩入口一区二区| 亚洲精品成人综合色在线| 亚洲色大成网站WWW永久麻豆| 亚洲欧美激情在线一区| 中文字幕人妻中出制服诱惑 | 午夜免费福利小电影| 蜜桃av多人一区二区三区| 四虎成人高清永久免费看| 国内精品久久人妻无码不卡| 精品人妻少妇一区二区三区| 日韩精品一区二区三区四| 成码无人AV片在线电影网站 | 色熟妇人妻久久中文字幕| 熟女乱一区二区三区四区| 亚洲男人电影天堂无码| 日韩在线视频一区二区三| 四虎永久精品免费视频| 久久人人97超碰国产精品| 国产精品香港三级国产av| 免费久久人人爽人人爽AV| 国产在线中文字幕精品| 国产精品久久久久久影视| 日韩伦人妻无码|