前言:本站為你精心整理了血液循環(huán)建模管理范文,希望能為你的創(chuàng)作提供參考價(jià)值,我們的客服老師可以幫助你提供個(gè)性化的參考范文,歡迎咨詢。

摘要:應(yīng)用功率鍵合圖方法,建立了一種多分支血液循環(huán)系統(tǒng)的計(jì)算機(jī)仿真模型,即描述血液循環(huán)系統(tǒng)內(nèi)血流動(dòng)力學(xué)變量變化規(guī)律的狀態(tài)方程。該仿真模型較為細(xì)致地刻畫了血液循環(huán)系統(tǒng)的生理特性,形成了較完整的人體血液循環(huán)系統(tǒng)的計(jì)算機(jī)模型,此模型可模擬血液循環(huán)系統(tǒng)的生理和病理特性,得出相應(yīng)的心血管動(dòng)力學(xué)仿真數(shù)據(jù)和波形,為進(jìn)行血液循環(huán)系統(tǒng)生理和病理的醫(yī)學(xué)研究提供了新的研究手段。
關(guān)鍵詞:血液循環(huán)系統(tǒng)計(jì)算機(jī)仿真功率鍵合圖法
0引言
功率鍵合圖法是一種系統(tǒng)動(dòng)力學(xué)建模方法,它以圖形方法來表示、描述系統(tǒng)動(dòng)態(tài)結(jié)構(gòu),是對(duì)流體系統(tǒng)進(jìn)行動(dòng)態(tài)數(shù)字仿真時(shí)有效的建模工具。通過已有的研究工作表明,功率鍵合圖方法可以較好地應(yīng)用于生物流體系統(tǒng)仿真,特別是人體循環(huán)系統(tǒng)的建模和數(shù)字仿真[10]。
我們?cè)谝郧暗墓ぷ鳟?dāng)中,建立了一個(gè)簡化的血液循環(huán)系統(tǒng)模型[10],驗(yàn)證了功率鍵合圖法的可行性和有效性。鍵合圖建模方法的優(yōu)點(diǎn)是直觀形象,便于獲得狀態(tài)空間方程,有利于數(shù)值化計(jì)算,避免了電模擬方法中推導(dǎo)狀態(tài)方程困難的弱點(diǎn)。本文對(duì)血液循環(huán)系統(tǒng)進(jìn)行了較細(xì)致和全面的劃分,建立了一個(gè)包括動(dòng)脈系統(tǒng)、靜脈系統(tǒng)、心臟(左、右心室和心房)以及冠脈循環(huán)、外周循環(huán)的多分支血液循環(huán)系統(tǒng)仿真模型。
應(yīng)用功率鍵合圖方法對(duì)血液循環(huán)系統(tǒng)進(jìn)行建模和仿真的基本規(guī)則是,(1)把血液循環(huán)系統(tǒng)的結(jié)構(gòu)及各主要?jiǎng)討B(tài)影響因素以圖示模型形式,即功率鍵合圖加以表示,(2)從功率鍵合圖出發(fā),建立系統(tǒng)的動(dòng)態(tài)數(shù)學(xué)模型——狀態(tài)空間方程,(3)在數(shù)字計(jì)算機(jī)上對(duì)狀態(tài)方程進(jìn)行求解。
1多分支血液循環(huán)系統(tǒng)模型的建立
1.1系統(tǒng)描述
血液循環(huán)系統(tǒng)模型如圖1所示[4]。在心血管循環(huán)系統(tǒng)中,血液在心臟“泵”的作用下所進(jìn)行的循環(huán)流動(dòng),可以看作是一種功率流的流動(dòng)、傳輸、分配和轉(zhuǎn)換的過程。血液在左右心室有節(jié)律地收縮作用下,被泵向人體的各個(gè)部分,其中包括:體循環(huán)區(qū)(血液由左心室經(jīng)主動(dòng)脈、大動(dòng)脈、外周循環(huán)區(qū)和腔靜脈,回到右心房),肺循環(huán)區(qū)(血液由右心室流經(jīng)肺動(dòng)脈和肺靜脈到左心房。),腹部內(nèi)循環(huán),頸部和頭部循環(huán),以及冠脈循環(huán)等。在心房和心室、心室和主動(dòng)脈之間存在著防止血液倒流的膜瓣,如二尖瓣、三尖瓣、主動(dòng)脈瓣等。
圖1血液循環(huán)系統(tǒng)模型
1.2功率鍵合圖模型
應(yīng)用功率鍵合圖建模方法的第一步是將原系統(tǒng)表達(dá)為功率鍵合圖的圖示模型。功率鍵合圖由功率鍵、結(jié)點(diǎn)和作用元等主要元素構(gòu)成,多分支血液循環(huán)系統(tǒng)的功率鍵合圖如圖2所示。
rnvchvrhhcharna
圖2多分支血液循環(huán)系統(tǒng)功率鍵合圖模型(此圖有省略)
參考圖2,繪制多分支血液循環(huán)系統(tǒng)功率鍵合圖的步驟可簡述如下:
(1)根據(jù)對(duì)多分支循環(huán)系統(tǒng)各個(gè)功率流程分支的分析,依次確定各0結(jié)點(diǎn)和1結(jié)點(diǎn)。
0結(jié)點(diǎn)表示集總的流容容腔,如心室腔、主動(dòng)脈彈性腔,在0結(jié)點(diǎn)處血液壓力為等值,而該結(jié)點(diǎn)輸入的血流量等于輸出的血流量。1結(jié)點(diǎn)表示集總的流阻管路或流感管路,如大動(dòng)脈血管,在1結(jié)點(diǎn)處血流量為等值,而該結(jié)點(diǎn)的壓力降等于上流壓力值減去下流壓力值。在圖2的循環(huán)系統(tǒng)模型中共有15個(gè)0結(jié)點(diǎn)和21個(gè)1結(jié)點(diǎn)。
(2)畫上各結(jié)點(diǎn)周圍的功率鍵,并標(biāo)注功率流向。
功率鍵是帶有箭頭和因果線表示功率的線段。本模型中構(gòu)成功率的兩個(gè)變量是血壓和血流。箭頭表示系統(tǒng)作用元中的功率流向,即循環(huán)血液的流動(dòng)方向。
(3)在功率鍵的一端標(biāo)注上相應(yīng)的c、r、l作用元。
為了能夠全面、細(xì)致地刻畫系統(tǒng)特性,本模型中應(yīng)用了三種作用元:流容、流阻和流感。
流容反映血管的順應(yīng)性,畫在0結(jié)點(diǎn)上,用c來表示,簡稱c元。例如,圖2中的cta、car、cvn、cpa、cpv是分別表示與圖1相對(duì)應(yīng)部分的胸主動(dòng)脈、大動(dòng)脈、腔靜脈、肺動(dòng)脈和肺靜脈順應(yīng)性的流容。
流感反映血流的慣性特性,畫在1結(jié)點(diǎn)上,用l來表示,簡稱l元。如圖2中的lta、lar、lvn、lpa、lpv、lco是分別表示相對(duì)應(yīng)的胸主動(dòng)脈、大動(dòng)脈、腔靜脈、肺動(dòng)脈、肺靜脈及冠狀動(dòng)脈血流慣性的流感。
流阻反映血流粘滯阻力的特性,簡稱r元,畫在1結(jié)點(diǎn)上。例如圖2中rta、rar、rvn、rpa、rpv和rco是分別表示胸主動(dòng)脈、大動(dòng)脈、腔靜脈、肺動(dòng)脈、肺靜脈及冠狀動(dòng)脈血流粘滯阻力的阻性作用元。
(4)在各功率鍵上標(biāo)注因果線,以便于建立系統(tǒng)的數(shù)學(xué)模型。
功率鍵上的因果線表示各作用元上流量與壓力兩變量之間的因果關(guān)系,確定了自變量和因變量,便于建立系統(tǒng)的狀態(tài)方程。對(duì)于c元,其功率鍵上兩個(gè)變量間,自變量是流量,因變量是壓力;對(duì)于l元和r元,其功率鍵上兩個(gè)變量間壓力是自變量,流量是因變量。
經(jīng)過以上步驟,就完成了循環(huán)系統(tǒng)的功率鍵合圖模型。可以看出,鍵合圖模型就是通過結(jié)點(diǎn)、功率鍵和作用元這些元素對(duì)心血管循環(huán)系統(tǒng)直觀而形象的描述和反映。在將循環(huán)系統(tǒng)翻譯成鍵合圖模型后,就可以方便、有條不紊地推導(dǎo)系統(tǒng)數(shù)學(xué)模型。
2系統(tǒng)數(shù)學(xué)模型
功率鍵合圖建模方法的第二步是推導(dǎo)系統(tǒng)的數(shù)學(xué)模型。在推導(dǎo)系統(tǒng)動(dòng)態(tài)過程的數(shù)學(xué)模型——狀態(tài)方程時(shí),首先要確定狀態(tài)變量。應(yīng)用鍵合圖方法建模的方便之處就在于對(duì)狀態(tài)變量的確定有一定之規(guī),可遵循固定的法則。
由于系統(tǒng)的狀態(tài)方程是一階微分方程組,在其變量間有導(dǎo)數(shù)關(guān)系,而在鍵合圖中,只有流容c和流感l(wèi)作用元中的兩個(gè)變量間才有導(dǎo)數(shù)或積分關(guān)系,所以應(yīng)當(dāng)從c元和l元各自的變量間取一個(gè)變量作為狀態(tài)變量。
對(duì)于c元,自變量為流量,因變量為壓力,其關(guān)系為:
(1)
對(duì)于l元,自變量為壓力,因變量為流量,其關(guān)系為:
(2)
對(duì)于r元,流量和壓力之間的關(guān)系有:
(3)
根據(jù)規(guī)則,取c元功率鍵上的壓力變量p和l元功率鍵上的流量變量q為狀態(tài)變量,狀態(tài)變量的一階導(dǎo)數(shù)即為狀態(tài)方程。
因此,對(duì)于0結(jié)點(diǎn),由(1)式兩邊取導(dǎo)數(shù)可得:
(4)
其中,是第i個(gè)0結(jié)點(diǎn)處的壓力,為輸入血流量,為輸出血流量,是第i個(gè)0結(jié)點(diǎn)處的流容。
對(duì)于1結(jié)點(diǎn),由(2)式和(3)式可得:
(5)
其中,是第i個(gè)1結(jié)點(diǎn)處的血流量,為上流壓力,為下流壓力,和分別是第i個(gè)1結(jié)點(diǎn)處的流阻和流感。
對(duì)每個(gè)0節(jié)點(diǎn)和1結(jié)點(diǎn)都建立類似(4)和(5)的關(guān)系式,則可以得到系統(tǒng)的數(shù)學(xué)模型。本模型的數(shù)學(xué)模型是36階的狀態(tài)空間方程,即模型由36個(gè)一階微分方程組成。下面列出了主動(dòng)脈循環(huán)部分的狀態(tài)方程:
(6)
(7)
(8)
(9)
(10)
(11)
其中,cta、caa、car分別是胸主動(dòng)脈、腹主動(dòng)脈、外周動(dòng)脈的流容;lta、laa、lar、lvn分別是胸主動(dòng)脈、腹主動(dòng)脈、外周動(dòng)脈和腔靜脈的流感;rta、raa、rsa、rpc和rsv是分別表示胸主動(dòng)脈、腹主動(dòng)脈、外周動(dòng)脈、外周循環(huán)和腔靜脈的流阻。ptao、paao、psar和qtao、qaao、qsar分別是動(dòng)脈循環(huán)中的胸主動(dòng)脈、腹主動(dòng)脈、外周動(dòng)脈部分的壓力和流量。
血液循環(huán)是由心臟的舒張-收縮動(dòng)作推動(dòng)的,本文采用了心室時(shí)變流容來表示這種舒張-收縮動(dòng)作,是時(shí)間的周期函數(shù)。
對(duì)于循環(huán)系統(tǒng)中的膜瓣作用,可以作為模型的約束條件加入到系統(tǒng)數(shù)學(xué)模型當(dāng)中:當(dāng)血液正向流動(dòng)時(shí),膜瓣阻力為一較小的數(shù)值;當(dāng)血液反向流動(dòng)時(shí),膜瓣阻力為無窮大,即阻止血液倒流。
本模型中的流容、流阻和流感參數(shù)參照文獻(xiàn)[4]。
3計(jì)算機(jī)仿真
本文采用4階定步長runge-kutta法來求解模型的狀態(tài)方程,設(shè)定仿真步長為0.0001s,在奔騰586pc機(jī)上進(jìn)行數(shù)字仿真。
當(dāng)加入邊界約束條件,設(shè)置各狀態(tài)變量初始參數(shù)之后,狀態(tài)變量便以狀態(tài)方程為基礎(chǔ)被同步地展開。在每一步,血液循環(huán)系統(tǒng)各部分的壓力和流量值根據(jù)狀態(tài)方程被分別計(jì)算出來。待仿真數(shù)據(jù)變化穩(wěn)定后,由系統(tǒng)輸出方程可以得到每個(gè)心動(dòng)周期內(nèi)系統(tǒng)各部分的血壓p、血流量q、血液容量v以及心輸出量co和射血分?jǐn)?shù)ef等各項(xiàng)生理參數(shù)數(shù)值,從而可以對(duì)多項(xiàng)生理特性進(jìn)行計(jì)算機(jī)仿真。本文進(jìn)行了正常生理?xiàng)l件下和高血壓、血管剛性的病理?xiàng)l件下的生理特性仿真。
3.1正常生理狀態(tài)仿真
設(shè)定各狀態(tài)變量的初始參數(shù)為正常值[4,5],對(duì)系統(tǒng)模型進(jìn)行計(jì)算,即可得到正常生理?xiàng)l件下,血液循環(huán)系統(tǒng)血流動(dòng)力學(xué)參數(shù)的仿真數(shù)據(jù)。
圖3給出了在正常狀態(tài)時(shí),三個(gè)心動(dòng)周期(每個(gè)心動(dòng)周期為0.8秒)內(nèi)的左心室壓力和主動(dòng)脈血的仿真波形壓的仿真波形。從壓力仿真波形圖中可以看出,心室壓力和主動(dòng)脈壓力在每個(gè)心動(dòng)周期內(nèi)的壓力脈動(dòng)是十分顯著的。圖4是肺動(dòng)脈血壓和肺靜脈血壓的仿真波形。肺動(dòng)脈壓的壓力脈動(dòng)也較為顯著,而在肺靜脈中,血液的壓力脈動(dòng)就不很明顯。
圖3左心室和主動(dòng)脈的壓力變化仿真
140
01.6
t/s
(a)左心室血液容量的周期變化
140
01.6
t/s
(b)右心室血液容量的周期變化
圖4肺動(dòng)脈和肺靜脈的壓力變化仿真
在表1中給出了血液循環(huán)系統(tǒng)主要血流動(dòng)力學(xué)變量在正常狀態(tài)時(shí)條件下的仿真數(shù)值。由生理學(xué)規(guī)律可知,左心室收縮壓范圍一般在17~18kpa,主動(dòng)脈壓力范圍在12~17kpa,肺動(dòng)脈壓在2kpa左右。因此,仿真所得波形和數(shù)據(jù)與實(shí)際的生理規(guī)律是相符的。
表1中還給出了評(píng)定心臟功能的兩個(gè)有用的指標(biāo):心輸出量co和射血分?jǐn)?shù)ef,仿真所得到的數(shù)據(jù)為:心輸出量5256ml/min,射血分?jǐn)?shù)61%,都符合實(shí)際的生理規(guī)律。
表1血液循環(huán)系統(tǒng)主要血流動(dòng)力學(xué)變量計(jì)算機(jī)仿真數(shù)值
仿真實(shí)驗(yàn)
項(xiàng)目
左心室壓
峰值
lvpp
(kpa)
主動(dòng)脈壓
ap
(kpa)
左心室舒
張末容積
lvedv
(ml)
右心房壓
rap
(kpa)
肺動(dòng)脈壓
pap
(kpa)
右心室舒
張末容積
rvedv
(ml)
冠脈血流
量
cf
(ml/min)
心輸出量
co
(ml/min)
射血分?jǐn)?shù)
ef
(%)
正常
17.96
16.82
123
0.6
2.13
130
228
5256
61
高血壓
21.28
18.63
126
0.6
2.26
130
230
4989
54
血管剛性
19.29
17.10
124
0.6
2.13
130
229
5010
58
3.2高血壓仿真
由于動(dòng)脈管徑窄縮,或是動(dòng)脈壁增厚等原因常常會(huì)使動(dòng)脈血管的阻力增大,使得心臟在收縮期向主動(dòng)脈噴血時(shí)耗費(fèi)更多的功,從而引起高血壓癥狀。因此在本實(shí)驗(yàn)中,增大鍵合圖模型中的主動(dòng)脈和外周動(dòng)脈的流阻rta、raa、rar的數(shù)值,可以實(shí)現(xiàn)高血壓的仿真。
表1中給出了高血壓時(shí)各血流動(dòng)力學(xué)變量的仿真數(shù)據(jù)。從仿真數(shù)據(jù)中可以看到,左心室壓和主動(dòng)脈壓分別達(dá)到21.28kpa和18.63kpa,血壓值明顯升高,但是心輸出量4989ml/min和射血分?jǐn)?shù)54%的數(shù)值卻比正常狀態(tài)顯著降低,這表明高血壓時(shí)心臟的功能在減弱。
3.3血管剛性仿真
血管順應(yīng)性的倒數(shù)1/c被稱為血管剛性,血管剛性越大,血管順應(yīng)性則降低,使心室射血阻抗增大,導(dǎo)致心室噴射壓力和動(dòng)脈血壓升高,心輸出量和射血分?jǐn)?shù)降低。在本實(shí)驗(yàn)中,將主動(dòng)脈與外周血管的流容cta、caa、car分別降低至正常值的50%,可以模擬血管順應(yīng)性降低時(shí)的生理特性。
表1給出了各項(xiàng)血流動(dòng)力學(xué)變量的計(jì)算機(jī)仿真數(shù)值。從仿真數(shù)據(jù)中可以看到,左心室壓19.29kpa和主動(dòng)脈壓17.10kpa偏高,而心輸出量5010ml/min和射血分?jǐn)?shù)58%的數(shù)值比正常數(shù)值降低,符合實(shí)際的生理規(guī)律。
4討論
本文提出了一個(gè)多分支血液循環(huán)系統(tǒng)功率鍵合圖模型,敘述了以鍵合圖建模方法、狀態(tài)空間分析和計(jì)算機(jī)仿真為基礎(chǔ)的心血管動(dòng)力學(xué)分析方法,并用該模型進(jìn)行了基本的生理仿真實(shí)驗(yàn)。
將功率鍵合圖建模方法應(yīng)用于人體循環(huán)系統(tǒng)的仿真研究,能夠較好地處理循環(huán)系統(tǒng)仿真中的建模問題,特別是從功率鍵合圖可以很方便地推導(dǎo)出狀態(tài)空間方程,從而正確的描述系統(tǒng)的動(dòng)態(tài)特征。這一點(diǎn)特別有利于在醫(yī)學(xué)研究人員中推廣計(jì)算機(jī)仿真技術(shù)這種有用的研究手段。同時(shí),這種仿真模型對(duì)循環(huán)系統(tǒng)特性的刻畫也較為全面和細(xì)致,生理仿真的實(shí)驗(yàn)結(jié)果在波形和定量上與人體檢測的結(jié)果是相吻合的。結(jié)合臨床對(duì)各項(xiàng)生理特性進(jìn)行計(jì)算機(jī)仿真,將為醫(yī)學(xué)研究提供一種新的強(qiáng)有力的研究手段。
參考文獻(xiàn)
[1]baijing,yingk,jarond.cardiovascularresponsestoexternalcounterpulsation:acomputersimulation[j].med&bioleng&comput,1992,30:317-323.
[2]harnkazutsurnta,toshirasato,masuoshiratakemathematicalmodelofcardiovascularmechanicsfordiagnosticanalgsisandtreatmentofheartfailure:part1modeldescriptionandtheoreticalanalysis[j].med&bioleng&comput,1994,32:3-11.
[3]engvallj,karissionm,askp.importanceofcollateralvesselsinaorticcoarctation:computersimulationatrestandexerciseusingtransmissionlineelements[j]med&bioleng&comput,1994,32:s115-s122.
[4]goldsteiny,beyarr,sidemans.influnceofpleuralpressurevariationoncardiovascularsystemdynamics:amodelstudy[j]med&bioleng&comput,1988,26:251-259.
[5]beyarr,kishony,sidemans,puterstudiesofsystemicandreginalbloodflowmechanismsduringcardiopulmonaryresuscitation[j]med&bioleng&comput,1984,22:499-506.
[6]beyarr,sidemans,dinnaru.cardioacassistbyintrathoracicandabdominalpressurevariations:amathematicalstudy[j]med&bioleng&comput,1984,22:507-515.
[7]何瑞榮.心血管生理學(xué)[m].北京:人民衛(wèi)生出版社,1987.10-76.
[8]卡諾普dc,羅森堡rc.系統(tǒng)動(dòng)力學(xué)——應(yīng)用鍵合圖方法[m].北京:機(jī)械工業(yè)出版社,1985.127-158.
[9]劉能宏,田樹軍.液壓系統(tǒng)動(dòng)態(tài)特性數(shù)字仿真[m].大連:大連理工大學(xué)出版社,1993.20-148.
[10]馮宇軍,田樹軍.功率鍵合圖法在血液循環(huán)系統(tǒng)計(jì)算機(jī)仿真中的應(yīng)用[j].大連理工大學(xué)學(xué)報(bào),1999,39(3):429-433.
studyofmodelingandsimulationofthemulti-branchbloodsystem
abstract:bythepowerbandgraph(pbg)method,acomputersimulationmodelofthemulti-branchbloodcirculationsystemispresented,whichdescribesthebloodfluiddynamiclawinthebloodsystembythestateequation.aminutedescriptionisgivedbythemodelonphysiologicalcharactersofbloodcirculationsystem(bcs).anintegratedcomputermodelonbcshasbeenestablished.themodelcansimulatephysiologicalcharactersofbloodcirculationsystem,andgetthesimulationdataandcurvesofbcshemodynamicsvaribles.themodelcanbeusedwidelyinthefieldofphysiologicalsystemsimulationstudy,themedicalstudyandmedicalaideducation.
keywords:bloodcirculationsystem,computersimulation,powerbandgraphmethod